Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 13(9): 4087-4100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818084

RESUMO

Gastric cancer peritoneal metastases (GCPM) are a leading cause of death in gastric cancer patients. In this study, we focused on the expression of cyclin-dependent protein kinases (CDK), essential regulators of transcription, metabolism, and cell differentiation, in GCPM. Utilizing the GSE62254 cohort, we established a CDK signature (CDKS) model comprising ten CDK gene family members. Analysis of both the GSE62254 and TCGA cohorts revealed that patients with low CDKS had a worse prognosis compared to those with high CDKS. Furthermore, patients with high CDKS demonstrated positive responses from immunotherapy, as observed in the KIM cohort. We investigated the association between CDKS and the tumor microenvironment, including immune escape mechanisms. Immunohistochemistry analysis revealed a positive correlation between CDK5 and PD-L1 expression in gastric cancer. Furthermore, we found that CDK5 knockdown led to the inhibition of PD-L1 expression in gastric cancer cells. Our findings highlight the potential of CDKS as a prognostic biomarker and an indicator of immunotherapy response in gastric cancer patients. Moreover, our study suggests that targeting CDK5 could provide a new pathway for exploring immunotherapeutic research.

2.
J Cell Mol Med ; 27(22): 3578-3590, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37605453

RESUMO

Gastric cancer peritoneal metastases (GCPM) is a leading cause of GC-related death. Early detection of GCPM is critical for improving the prognosis of advanced GC. Differentially expressed genes (DEGs) were identified in the GSE62254 database to distinguish between GCPM and non-GCPM. The gastric cancer peritoneal metastases signature (GCPMs) was developed using DEGs. We analysed the effectiveness of GCPMs as indicators for prognosis, chemotherapy, and immune therapy response in GC patients. Subsequently, we analysed the correlation between GCPMs and immune microenvironment as well as immune escape in GC patients. Random forest model and immunohistochemistry was utilized to identify the crucial genes that can aid in the diagnosis of GCPM. We identified five DEGs and utilized their expression to construct GCPMs. Patients with high GCPMs had a higher likelihood of a poor prognosis, while those with low GCPMs appeared to potentially benefit more from chemotherapy. GCPMs were a dependable marker for predicting the response to immunotherapy. Additionally, GCPMs was found to be significantly linked to stromal score and cancer-associated fibroblasts. SYNPO2 has been identified as the gene with the highest significance in the diagnosis of GCPM. Immunohistochemistry suggests that SYNPO2-positive expression in tumour cells, fibroblasts, inflammatory cell may be associated with promoting peritoneal metastasis in GC. GCPMs have shown to be a promising biomarker for predicting the prognosis and response of GC patients to chemotherapy and immunotherapy. The use of GCPMs for individual tumour evaluation may pave the way for personalized treatment for GC patients in the future.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/terapia , Imunoterapia , Peritônio , Microambiente Tumoral/genética
3.
J Cell Biochem ; 119(4): 3338-3351, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29130516

RESUMO

Altered expression of microRNA (miRNA) is strongly implicated in gastric cancer (GC). Here, we demonstrated a decreased expression of miRNA-329 in GC. Then we explored the regulatory mechanisms responsible for its effect on GC cells. GC tissues and their adjacent non-tumor tissues were collected. Complete follow-up was updated. A series of inhibitors, mimics, and siRNA against KDM1A were introduced to validate regulatory mechanisms for miR-497 and KDM1A in BGC-823 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assay were employed for evaluating the expressions of miRNA-329, KDM1A, H3K4me1, and H3K4me2. Cell proliferation, cycle progression, and apoptosis were assessed by means of an MTT assay and flow cytometry. Cell colony formation was assessed. uman gastric cancer xenotransplanted into nude mice was studied. As opposed to adjacent tissues and gastritis tissues, miRNA-329 was highly expressed and KDM1A was low expressed in GC tissues. The patients with high miRNA-329 expression or low KDM1A expression had longer survival periods. The miRNA-329 mimics and siRNA against KDM1A decreased KDM1A expression and increased H3K4me1 and H3K4me2 expressions. Forced expression of miRNA-329 in gastric cancer cells significantly promotes their capacity of apoptosis but reduces proliferation, migration, and invasion. KDM1A is a direct downstream target for miRNA-329. In a nude mouse subcutaneous tumor system, in vivo tumor growth of BGC-823 was significantly inhibited after treatment of miRNA-329 mimics or siRNA against KDM1A. We conclude that miRNA-329 functions as a tumor suppressor in GC, which could be achieved via transcriptional suppression of KDM1A.


Assuntos
Regulação para Baixo , Histona Desmetilases/genética , MicroRNAs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regiões 3' não Traduzidas , Adulto , Idoso , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...